If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25y^2-40y+4=0
a = 25; b = -40; c = +4;
Δ = b2-4ac
Δ = -402-4·25·4
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-20\sqrt{3}}{2*25}=\frac{40-20\sqrt{3}}{50} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+20\sqrt{3}}{2*25}=\frac{40+20\sqrt{3}}{50} $
| 5x/2-3x/1=24/1 | | A=(−8x−9)(5x+6) | | 25^2y-40y+4=0 | | 3x-24=5x÷2 | | 25y²-40+4=0 | | 2y=2×40+20 | | 25y²-40y+4=0 | | 3x-40+2x+20=180 | | 1.25(6+x)=16.50 | | 1.25(6-x)=16.50 | | 6(1.25+x)=16.50 | | 6(1.25-x)=16.50 | | 4x-25+x-5=180 | | 1,2^x=3 | | 9y–4=0 | | =5y-4y+3= | | 4x-25+x-10=180 | | 4(x+2)-19=3(x+1)-x | | x-2.2=8.6 | | 10x-7=13+5x | | x+60+2x=50 | | 2(3-5x)=26-6x | | 15x2-3x(8+5x)=-(3x-9)+33 | | 4x2-4x-21=0 | | (10x)+99=-1 | | y=4,6=12 | | -17/6=8x | | -5/7*y=10 | | 0,9z+0,1z+5z=36-3× | | (5000-x)*3.956=1750 | | 3x/2-1=1x/3+1/6 | | 3/2x-1=1/3x+1/6 |